
CodeArts Check

Best Practices

Issue 01

Date 2024-01-16

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2024-01-16) Copyright © Huawei Technologies Co., Ltd. i

Security Declaration

Vulnerability

Huawei's regulations on product vulnerability management are subject to the Vul. Response Process. For
details about this process, visit the following web page:
https://www.huawei.com/en/psirt/vul-response-process
For vulnerability information, enterprise customers can visit the following web page:
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Issue 01 (2024-01-16) Copyright © Huawei Technologies Co., Ltd. ii

https://www.huawei.com/en/psirt/vul-response-process
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Contents

1 Checking Code from Git with Preset Rules... 1

2 Checking Code from CodeArts Repo with Custom Rules...4

3 Huawei E2E DevOps Practice: Checking Code..10

CodeArts Check
Best Practices Contents

Issue 01 (2024-01-16) Copyright © Huawei Technologies Co., Ltd. iii

1 Checking Code from Git with Preset
Rules

Scenario
Check Java code from Git to protect quality.

Preparation
● You have obtained permissions of CodeArts Check.
● There is Java code in the Git repository.

Process

Table 1-1 Process

No. Step Description

1 Creating a
Project

Create a project.

2 Creating a Git
Service
Endpoint

Use a service endpoint to connect to a third-party
repository.

3 Creating a
Task to Check
Code from Git

Create a task.

4 Executing the
Task

Execute a task.

5 Viewing
Check Results

View check results.

CodeArts Check
Best Practices 1 Checking Code from Git with Preset Rules

Issue 01 (2024-01-16) Copyright © Huawei Technologies Co., Ltd. 1

Creating a Project

Step 1 Log in to the Huawei Cloud console.

Step 2 Click in the upper left corner and choose Developer Services > CodeArts
from the service list.

Step 3 Click Access Service.

Step 4 Click Create Project, and select the Scrum template. Set the project name to
Scrum01 and retain the default values for other parameters.

Step 5 Click OK to access the project.

----End

Creating a Git Service Endpoint
A service endpoint is an extension to CodeArts and supports connection to third-
party repositories.

With a service endpoint, CodeArts Check supports repositories either of CodeArts
Repo and third-parties.

Step 1 Enter a task through a project. In the navigation pane, choose Settings > General
> Service Endpoints.

Step 2 Click Create Endpoint and choose Git repository from the drop-down list.

Step 3 Configure the following information and click Confirm.

Table 1-2 Creating a Git service endpoint

Parameter Description

Service
Endpoint
Name

Enter a maximum of 256 characters, including letters, digits,
hyphens (-), underscores (_), periods (.), and spaces. For
example, Endpoint01.

Git
Repository
URL

Enter the HTTPS address of the Git repository to connect.

Username Enter the username of the Git repository to connect (max. 300
characters).

Password or
Access
Token

Enter the password of the Git repository to connect (max. 300
characters).

----End

Creating a Task to Check Code from Git

Step 1 In the navigation pane, choose Code > Check.

CodeArts Check
Best Practices 1 Checking Code from Git with Preset Rules

Issue 01 (2024-01-16) Copyright © Huawei Technologies Co., Ltd. 2

https://console-intl.huaweicloud.com/

Step 2 Click Create Task. Set parameters by referring to the following table.

Table 1-3 Task parameters

Para
meter

Description

Projec
t

Project that the task belongs to. Retain the default value (the Scrum01
project created in Creating a Project).

Code
Sourc
e

Select Git.

Name Customize a task name, for example, CheckTask01.

Endpo
int

Select the Endpoint01 service endpoint created in Creating a Git
Service Endpoint.

Reposi
tory

Retain the default value.

Branc
h

Retain the default value master.

Langu
age

Select the code language to be checked, for example, Java.

Step 3 Click Create Task.

----End

Executing the Task

Step 1 In the Tasks page, click to execute the task.

Step 2 Wait until the task is complete as prompted.

----End

Viewing Check Results

Step 1 In the Tasks page, search for the CheckTask01 task created in Creating a Task to
Check Code from Git.

Step 2 Click the task name to view the check details, including overview, issues, metrics,
logs, and settings.

----End

CodeArts Check
Best Practices 1 Checking Code from Git with Preset Rules

Issue 01 (2024-01-16) Copyright © Huawei Technologies Co., Ltd. 3

2 Checking Code from CodeArts Repo with
Custom Rules

Scenario

As the code and development framework expand, the static analysis needs to
cover additional scenarios. However, the following questions have also arisen:

● The traditional static analysis engines cannot offer real-time scenario-based
code checks by relying solely on general rules.

● Users may not be familiar with all scenarios covered by general rules, which
makes finding applicable rules for a newly developed service time-consuming.

● It is challenging to develop comprehensive and effective rules to fit different
users and services.

This section describes how to use custom rules to check code.

Preparation
● You have obtained permissions of CodeArts Check.

● There is Java code in the Git repository.

Process

Table 2-1 Process

No. Step Description

1 Creating a
Project

Create a project.

2 Creating a
Code
Repository in
CodeArts
Repo

Create a code repository.

CodeArts Check
Best Practices

2 Checking Code from CodeArts Repo with Custom
Rules

Issue 01 (2024-01-16) Copyright © Huawei Technologies Co., Ltd. 4

No. Step Description

3 Creating a
Rule File

Create a rule file to be uploaded when a custom rule is
created.

4 Customizing
a Rule

Create a custom rule.

5 Customizing
a Rule Set

Create a custom rule set to use custom rules.

6 Creating a
Task

Create a task that uses custom rules.

7 Checking
Code by
Using a
Custom Rule
Set

Configure the task with the custom rule set.

8 Viewing
Check Results

View the check results to check whether the rule takes
effect.

Creating a Project

Step 1 Log in to the Huawei Cloud console.

Step 2 Click in the upper left corner and choose Developer Services > CodeArts
from the service list.

Step 3 Click Access Service.

Step 4 Click Create Project, and select the Scrum template. Set the project name to
Scrum01 and retain the default values for other parameters.

Step 5 Click OK to access the project.

----End

Creating a Code Repository in CodeArts Repo

Step 1 In the navigation pane, choose Code > Repo.

Step 2 On the CodeArts Repo homepage, click New Repository and select Template.

Step 3 Click Next, and search for and select the Java Ant Demo template.

Step 4 Click Next. Set the repository name to Repo01 and deselect Automatically create
Check task. Retain the default values for other parameters.

Step 5 Click OK.

Step 6 Modify the code information in the HelloWorld.java file in the com/huawei
directory as follows:
package com.huawei;
/**

CodeArts Check
Best Practices

2 Checking Code from CodeArts Repo with Custom
Rules

Issue 01 (2024-01-16) Copyright © Huawei Technologies Co., Ltd. 5

https://console-intl.huaweicloud.com/

 * Generate a unique number
 *
 */
public class HelloWorld
{
//Used to print logs
 public void debugLog(List<String> msg) {
 for (String msg0 : msg) {
 System.out.println("DEBUG:"+ msg0);
 }
}
 public static void main(String[] args)
 {
 System.out.println("Hello World!");
 }
}

----End

Creating a Rule File

Step 1 Download and install the Visual Studio Code IDE editor (version 1.67.0 or later).

Step 2 On the IDE editor page, click on the left and search for Huawei Cloud
CodeNavi in the displayed window.

Step 3 Click Install to install this plug-in.

Step 4 Create a .kirin file in the editor workspace, for example, CheckDebugCode.kirin.
The file content is as follows:
functionDeclaration fd1 where
 and(
 fd1.hasBody,
 fd1.name startWith "debug",
 fd1.parameters.size() == 1,
 fd1.parameters[0].type.name == "java.util.List"
);

Step 5 Right-click the rule file and choose CodeNavi > Format to verify the syntax.

Step 6 Right-click the rule file and choose CodeNavi > Scan.

Step 7 In the displayed dialog box, select the file or directory to be checked and click
Scan.

Step 8 After the scanning is complete, click the defects in the lower left corner of the
page to display the specific code snippet. In addition, a rule file in .json format is
generated in the OutputReport file in the same directory.

----End

CodeArts Check
Best Practices

2 Checking Code from CodeArts Repo with Custom
Rules

Issue 01 (2024-01-16) Copyright © Huawei Technologies Co., Ltd. 6

https://marketplace.visualstudio.com/search?term=HUAWEI&target=VSCode&category=Programming%20Languages&sortBy=Relevance

Customizing a Rule

Step 1 In the navigation pane, choose Code > Check.

Step 2 Click the Rules tab.

Step 3 Click Create Rule. Set parameters by referring to Table 2-2.

Table 2-2 Rule parameters

Parame
ter

Description

Rule
Name

Custom rule name. It can be customized. For example,
CheckDebugCode.

Tool
Rule
Name

Rule source code file (by default).

Tool Check tool used by a custom rule. Currently, only SecBrella is
supported.

Langua
ge

Language checked by a custom rule. Currently, only Java is supported.

Source
Code

Rule source code file. Upload the file generated in Creating a Rule
File.

Severity Severity of a code issue detected by a rule. The value can be Critical,
Major, Minor, or Suggestion. Set this parameter to Suggestion.

Tag (Optional) Rule tag for different scenarios.
NOTE

Use commas (,) to separate multiple tags.

Descript
ion

Rule description. The content contains code in Markdown. Max.
10,000 characters. For example, check whether debugging code exists.

Complia
nt
Exampl
e

(Optional) Compliant code example. The content contains code in
Markdown. Max. 10,000 characters.

Nonco
mpliant
Exampl
e

(Optional) Noncompliant code example. The content contains code in
Markdown. Max. 10,000 characters.

Fix
Suggest
ions

(Optional) Issue fixing suggestions. The content contains code in
Markdown. Max. 10,000 characters.

Step 4 Click Create Rule.

----End

CodeArts Check
Best Practices

2 Checking Code from CodeArts Repo with Custom
Rules

Issue 01 (2024-01-16) Copyright © Huawei Technologies Co., Ltd. 7

Customizing a Rule Set

Step 1 On the task list, click the Rule Sets tab.

Step 2 Click Create Rule Set. In the displayed window, set Rule Set to RuleList and
Language to Java.

Step 3 Click OK.

Step 4 Select the rule created in Customizing a Rule and click Save in the upper right
corner.

----End

Creating a Task

Step 1 On the task list page, click Create Task and set parameters by referring to the
following table.

Table 2-3 Task parameters

Para
meter

Description

Projec
t

Retain the default value (the Scrum01 project created in Creating a
Project).

Code
Sourc
e

Source of code. Select Repo.

Name Customize a task name, for example, CheckTask01.

Reposi
tory

Select the Repo01 code repository created in Creating a Code
Repository in CodeArts Repo.

Branc
h

Retain the default value master.

Langu
age

Select Java.

Step 2 Click Create Task.

----End

Checking Code by Using a Custom Rule Set

Step 1 In the Tasks page, click the task name.

Step 2 Click Settings.

Step 3 Click Rule Sets. In the right pane, click to select the RuleList rule set created
in Customizing a Rule Set.

CodeArts Check
Best Practices

2 Checking Code from CodeArts Repo with Custom
Rules

Issue 01 (2024-01-16) Copyright © Huawei Technologies Co., Ltd. 8

Step 4 Click Start Check in the upper right corner.

----End

Viewing Check Results

Step 1 In the Tasks page, search for the CheckTask01 task created in Creating a Task.

Step 2 Click the task name to view the check details, including overview, issues, metrics,
logs, and settings.

----End

CodeArts Check
Best Practices

2 Checking Code from CodeArts Repo with Custom
Rules

Issue 01 (2024-01-16) Copyright © Huawei Technologies Co., Ltd. 9

3 Huawei E2E DevOps Practice: Checking
Code

This section takes a DevOps full-process sample project as an example to describe
how to configure a check task in a project.

Preset Tasks

The sample project has four preset code check tasks.

Table 3-1 Preset tasks

Preset Task Description

phoenix-
codecheck-worker

Checks the Worker function code.

phoenix-
codecheck-result

Checks the Result function code.

phoenix-
codecheck-vote

Checks the Vote function code.

phoenix-sample-
javas

Checks the JavaScript code of the entire code repository.

This section uses the phoenix-codecheck-worker task as an example.

Configuring and Executing a Task

For comprehensive checks, developers can add some simple configurations (for
example, a Python check rule set) to the preset code check task.

Step 1 Edit a task.

1. Go to the Phoenix Mall project and choose Code > Check. The preset four
tasks are displayed.

CodeArts Check
Best Practices 3 Huawei E2E DevOps Practice: Checking Code

Issue 01 (2024-01-16) Copyright © Huawei Technologies Co., Ltd. 10

2. Find the phoenix-codecheck-worker task in the list.
3. Click the task name to go to the details page and click the Settings tab.
4. In the navigation pane, choose Rule Sets. The default language of a rule set

is Java.
5. Add the Python language check rule set.

a. Click next to Languages Included to refresh the language list.

NO TE

If Python is displayed on the page, skip this step.

b. Click to enable the Python language.
c. In the dialog box that is displayed, click OK.

Step 2 Execute the task.

1. Click Start Check to start the task.

2. If is displayed on the page, the task is successfully executed.
If the task fails, check and fix errors based on the message displayed on the
page.

----End

Viewing Check Results
CodeArts Check collects check results and provides fix suggestions for detected
issues. Optimize the project code based on the suggestions.

Step 1 On the task details page, click the Overview tab to view the result statistics.

Step 2 Click the Issues tab to view the issue list.

Click Help in the question box to view fix suggestions. You can find the
corresponding file and code location in the code repository as required and
optimize the code based on the fix suggestions.

----End

CodeArts Check
Best Practices 3 Huawei E2E DevOps Practice: Checking Code

Issue 01 (2024-01-16) Copyright © Huawei Technologies Co., Ltd. 11

	Contents
	1 Checking Code from Git with Preset Rules
	2 Checking Code from CodeArts Repo with Custom Rules
	3 Huawei E2E DevOps Practice: Checking Code

